Graph neural networks (GNNs) often struggle in class-imbalanced settings, where minority classes are under-represented and predictions are biased toward majorities. We propose \textbf{PIMPC-GNN}, a physics-informed multi-phase consensus framework for imbalanced node classification. Our method integrates three complementary dynamics: (i) thermodynamic diffusion, which spreads minority labels to capture long-range dependencies, (ii) Kuramoto synchronisation, which aligns minority nodes through oscillatory consensus, and (iii) spectral embedding, which separates classes via structural regularisation. These perspectives are combined through class-adaptive ensemble weighting and trained with an imbalance-aware loss that couples balanced cross-entropy with physics-based constraints. Across five benchmark datasets and imbalance ratios from 5-100, PIMPC-GNN outperforms 16 state-of-the-art baselines, achieving notable gains in minority-class recall (up to +12.7\%) and balanced accuracy (up to +8.3\%). Beyond empirical improvements, the framework also provides interpretable insights into consensus dynamics in graph learning. The code is available at \texttt{https://github.com/afofanah/PIMPC-GNN}.
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.
Graph Neural Networks frequently exhibit significant performance degradation in the out-of-distribution test scenario. While test-time training (TTT) offers a promising solution, existing Parameter Finetuning (PaFT) paradigm suffer from catastrophic forgetting, hindering their real-world applicability. We propose TTReFT, a novel Test-Time Representation FineTuning framework that transitions the adaptation target from model parameters to latent representations. Specifically, TTReFT achieves this through three key innovations: (1) uncertainty-guided node selection for specific interventions, (2) low-rank representation interventions that preserve pre-trained knowledge, and (3) an intervention-aware masked autoencoder that dynamically adjust masking strategy to accommodate the node selection scheme. Theoretically, we establish guarantees for TTReFT in OOD settings. Empirically, extensive experiments across five benchmark datasets demonstrate that TTReFT achieves consistent and superior performance. Our work establishes representation finetuning as a new paradigm for graph TTT, offering both theoretical grounding and immediate practical utility for real-world deployment.
This study addresses the challenge of accurately identifying multi-task contention types in high-dimensional system environments and proposes a unified contention classification framework that integrates representation transformation, structural modeling, and a task decoupling mechanism. The method first constructs system state representations from high-dimensional metric sequences, applies nonlinear transformations to extract cross-dimensional dynamic features, and integrates multiple source information such as resource utilization, scheduling behavior, and task load variations within a shared representation space. It then introduces a graph-based modeling mechanism to capture latent dependencies among metrics, allowing the model to learn competitive propagation patterns and structural interference across resource links. On this basis, task-specific mapping structures are designed to model the differences among contention types and enhance the classifier's ability to distinguish multiple contention patterns. To achieve stable performance, the method employs an adaptive multi-task loss weighting strategy that balances shared feature learning with task-specific feature extraction and generates final contention predictions through a standardized inference process. Experiments conducted on a public system trace dataset demonstrate advantages in accuracy, recall, precision, and F1, and sensitivity analyses on batch size, training sample scale, and metric dimensionality further confirm the model's stability and applicability. The study shows that structured representations and multi-task classification based on high-dimensional metrics can significantly improve contention pattern recognition and offer a reliable technical approach for performance management in complex computing environments.
Continual learning is a challenge for models with static architecture, as they fail to adapt to when data distributions evolve across tasks. We introduce a mathematical framework that jointly models architecture and weights in a Sobolev space, enabling a rigorous investigation into the role of neural network architecture in continual learning and its effect on the forgetting loss. We derive necessary conditions for the continual learning solution and prove that learning only model weights is insufficient to mitigate catastrophic forgetting under distribution shifts. Consequently, we prove that by learning the architecture and weights simultaneously at each task, we can reduce catastrophic forgetting. To learn weights and architecture simultaneously, we formulate continual learning as a bilevel optimization problem: the upper level selects an optimal architecture for a given task, while the lower level computes optimal weights via dynamic programming over all tasks. To solve the upper level problem, we introduce a derivative-free direct search algorithm to determine the optimal architecture. Once found, we must transfer knowledge from the current architecture to the optimal one. However, the optimal architecture will result in a weights parameter space different from the current architecture (i.e., dimensions of weights matrices will not match). To bridge the dimensionality gap, we develop a low-rank transfer mechanism to map knowledge across architectures of mismatched dimensions. Empirical studies across regression and classification problems, including feedforward, convolutional, and graph neural networks, demonstrate that learning the optimal architecture and weights simultaneously yields substantially improved performance (up to two orders of magnitude), reduced forgetting, and enhanced robustness to noise compared with static architecture approaches.
The k-nearest neighbors (kNN) algorithm is a cornerstone of non-parametric classification in artificial intelligence, yet its deployment in large-scale applications is persistently constrained by the computational trade-off between inference speed and accuracy. Existing approximate nearest neighbor solutions accelerate retrieval but often degrade classification precision and lack adaptability in selecting the optimal neighborhood size (k). Here, we present an adaptive graph model that decouples inference latency from computational complexity. By integrating a Hierarchical Navigable Small World (HNSW) graph with a pre-computed voting mechanism, our framework completely transfers the computational burden of neighbor selection and weighting to the training phase. Within this topological structure, higher graph layers enable rapid navigation, while lower layers encode precise, node-specific decision boundaries with adaptive neighbor counts. Benchmarking against eight state-of-the-art baselines across six diverse datasets, we demonstrate that this architecture significantly accelerates inference speeds, achieving real-time performance, without compromising classification accuracy. These findings offer a scalable, robust solution to the long-standing inference bottleneck of kNN, establishing a new structural paradigm for graph-based nonparametric learning.
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
Graph neural networks (GNNs) have become the standard tool for encoding data and their complex relationships into continuous representations, improving prediction accuracy in several machine learning tasks like node classification and link prediction. However, their use in sensitive applications has raised concerns about the potential leakage of training data. Research on privacy leakage in GNNs has largely been shaped by findings from non-graph domains, such as images and tabular data. We emphasize the need of graph specific analysis and investigate the impact of graph structure on node level membership inference. We formalize MI over node-neighbourhood tuples and investigate two important dimensions: (i) training graph construction and (ii) inference-time edge access. Empirically, snowball's coverage bias often harms generalisation relative to random sampling, while enabling inter-train-test edges at inference improves test accuracy, shrinks the train-test gap, and yields the lowest membership advantage across most of the models and datasets. We further show that the generalisation gap empirically measured as the performance difference between the train and test nodes is an incomplete proxy for MI risk: access to edges dominates-MI can rise or fall independent of gap changes. Finally, we examine the auditability of differentially private GNNs, adapting the definition of statistical exchangeability of train-test data points for graph based models. We show that for node level tasks the inductive splits (random or snowball sampled) break exchangeability, limiting the applicability of standard bounds for membership advantage of differential private models.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.